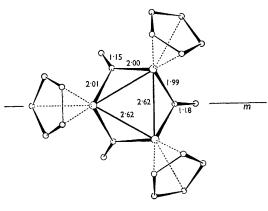
Trimeric π -Cyclopentadienylcarbonylrhodium


By O. S. MILLS and E. F. PAULUS

(Department of Chemistry, University of Manchester, Manchester)

THE preparation of monomeric π -cyclopentadienyldicarbonylrhodium (I) and its dimerisation have been reported.^{1,2} Exposure of solutions of (I) in light petroleum to ultraviolet light, however, results in the formation of a binuclear species of composition (C₅H₅)₂Rh₂(CO)₃ (II), which contains a single bridging CO group.³ Prolonged irradiation of hexane solutions of (I) yields a trinuclear species (III) of composition (C₅H₅RhCO)₃.⁴

Crystals of (III) were kindly supplied by Professor E. O. Fischer. The black crystals belong to the monoclinic system with unit cell parameters a = 7.06, b = 12.92, c = 9.47 Å, $\beta = 94.75^{\circ}$, U = 861 Å³, M = 588.0 and with Z = 2 molecules per cell ($C_{18}H_{15}Rh_{3}O_{3}$). Systematic absences could arise from either of the space groups $P2_1$ or $P2_1/m$. In the latter case, the molecule would be required to have a mirror plane of symmetry. A study of the three-dimensional Patterson synthesis, together with three-dimensional electron density syntheses, showed no deviation from *m* symmetry and the final refinements were carried out with the space group $P2_1/m$. The atomic positions were first refined with a programme written by us for the Atlas computer based on the minimisation of $R.^5$ After two cycles the *R*-value was 11.0% (699 reflexions) which reduced to 7.97% after conventional full-matrix least-squares refinement.

The figure shows that the trimer consists, within

Figure

Average standard deviation of Rh-C 0.03 Å Average standard deviation of C-C 0.04 Å

- ¹ E. O. Fischer and K. Bittler, Z. Naturforsch., 1961, 16b, 225.
- ² E. O. Fischer and K. Bittler, Z. Naturforsch., 1961, 16b, 835.
- ³ O. S. Mills and J. P. Nice, unpublished structure determination. ⁴ E. O. Fischer and H. Schuster-Woldan, personal communication.

- ⁵ A. K. Bhuiya and E. Stanley, Acta Cryst., 1963, 16, 981.
 ⁶ E. R. Corey, L. F. Dahl, and W. Beck, J. Amer. Chem. Soc., 1963, 85, 1202.
- ⁷ Rh₃C₂₀H₂₁; preparation and structure to be reported.

experimental error, of an equilateral triangle of rhodium atoms in which each pair of atoms is symmetrically bridged by a carbonyl group. All the carbonyl groups are displaced to one side of this rhodium triangle; on the other side, attached one to each rhodium, are the cyclopentadienyl rings. The average Rh-C distances are 2.24 Å (Rh-ring) and 2.00 Å (Rh-carbonyl) both of which are in close agreement with the values, 2.26 and 2.01 Å, found in (II). The Rh-CO distance is midway between the values obtained for terminal CO groups, 1.873 and 1.866, and triple-bridging groups, 2.17 Å.⁶ The Rh-Rh distance, 2.62 Å, is shorter than that found in (II), 2.68 Å, in the metal, 2.69 Å, or in Rh₆(CO)₁₆, 2.78 Å.⁶ We can offer no explanation for this shortening at present; it cannot simply be a property of the tris(cyclopentadienylrhodium) ring system since in the one other compound which we have studied containing this system the corresponding distance is 0.1 Å greater.7

(Received, September 23rd, 1966; Com. 711.)